Watch Where You’re Pointing That!

This week Nadesh Ramanathan, a member of research staff in my group, will be presenting a paper at the virtual FPL 2020 conference entitled “Precise Pointer Analysis in High Level Synthesis” (jointly with John Wickerson and myself). This blog post is intended as an accessible summary of the key message of the paper.

People are now aiming to generate hardware accelerators for more complex algorithms than things like classical CNNs, low-level image processing tasks, and other bread-and-butter hardware acceleration tasks. Inevitably, this is a difficult task to get right, and the prevalence of C/C++-based high-level synthesis (HLS) tools offers a great opportunity to experiment with the design space. Sophisticated algorithms written in C/C++ often incorporate pointers, which have long been difficult for HLS tools. Previously, I proposed a relatively sophisticated analysis using separation logic, together with my PhD student Felix Winterstein, which is an intensive analysis specialised to certain data structures. Nadesh’s most recent work can, in some sense, be viewed as the opposite. He is trying to make more simple, but more generally applicable pointer analyses more widely understood and used within HLS, while trying to quantify how much this might bring to hardware accelerator design.

The basic idea is that since FPGA compile times are long, we can afford to spend a bit more time being precise about which variables can point to which other variables. The question is, what are the benefits of being more precise in the context of HLS? Nadesh has studied two different types of ‘sensitivity’ of pointer analyses – to flow and to context. Flow-sensitive analyses consider the ordering of memory operations, context sensitive analyses consider the calling context of functions. The most common form of analysis in HLS is Andersen analysis, which is neither flow- nor context-sensitive. So how much do we gain by utilising more precise analyses?

Nadesh studies this question by modifying the LegUp source code, showing that over the PTABen benchmark set, area utilisation can be halved and performance doubled by using these analyses. This suggests that as we move towards greater diversity in hardware accelerators, HLS tool developers should think carefully about their pointer analyses.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s