This summer, I decided to read something about Model Theory. Aware of my limited time, I decided to aim for a slim volume as a guide, so went for An Invitation to Model Theory by Jonathan Kirby.
Here I collect some notes I made while reading Kirby, completely biased to my own interests. Definitions and theorems largely follow the book, but have often been tweaked by me to make my notes more self-contained. I’ve also tried to ‘sloganise’ each of the originally-unnamed theorems in a way that helps me grasp their essence. Additional commentary around the definitions and theorems is mine, and I’ve added a couple of extra definitions to make things easier for me to read back in the future. Of course there is some risk that I’ve introduced errors or lack of clarity, in which case I’m sure the fault lies with me not with the book – please do reach out if you spot anything.
What this post will discuss
We will look at defining basic syntactical objects, terms and formulas, and their interpretations (all in first-order logic). We will look at ideas relating to whether mathematical structures can be distinguished via the truth of formal sentences, including embedding of one structure inside another. We will look at results guaranteeing the existence of structures (especially infinite structures) satisfying sets of such sentences. Turning this around, we’ll also look at some results on which structures can be axiomatised by such sets of sentences. We will consider the extent to which one can define a subset using first-order sentences and the relationship to quantifier elimination (see also my post including algorithms for quantifier elimination). Finally, we will look at the idea of ‘how uniquely’ mathematical structures can be described in this way.
What this post will not discuss
I have purposely not given proofs or examples. Kirby’s book of course has (most) proofs and is rich in examples, through which much of the material is developed. This means I have not discussed some really interesting results on, say, algebraically closed fields, on which Kirby spends considerable time. Those interested in how to apply some of these ideas would do well to consult the book. In addition, I have avoided the topic of types in this simple set of notes, which Kirby highlights as a “central concept in model theory”, despite the interesting results they enable later in the book, e.g. saturated models. The exception is that I included a simplified version of the Ryll-Nardzewski theorem at the end of this post (the proof given uses types) because this particular part of the theorem may be of use to me in the future and can be stated without recourse to types.
I hope to do a later blog post with some of the material using types in due course.
Languages and Structures
Definition (Language). A language consists of a set of relation symbols, a set of function symbols, a set of constant symbols and, for each relation and function symbol, a positive number known as its arity. The set of all these symbols is denoted
.
Definition (–structure). An
-structure
consists of a set
called its domain, together with interpretations of the symbols in
: for each relation symbol
of arity
, a subset
of
; for each function symbol
of arity
, a function
; for each constant symbol
, a value
.
Definition (Embedding). Let and
be
-structures. An embedding of
into
is an injection
s.t.: for all relation symbols
of
and all
,
iff
; for all function symbols
of
and all
,
; for all constant symbols
of
,
.
Definition (Isomorphism). An embedding is an isomorphism iff there is an embedding
s.t.
is the identity on
and
is the identity on
.
Definition (Automorphism). An automorphism is an isomorphism from a structure to itself.
Terms, Formulas and their Models
Definition (–term). The set of terms of the language
is defined recursively as follows: every variable is a term; every constant symbol of
is a term; if
is a function symbol of
of arity
and
are terms of
, then
is a term; only something built from the preceding clauses in finitely many steps is a term.
Definition (–formula). The set of formulas of
is defined recursively as follows: if
and
are terms, then
is a formula; if
are terms and
is a relation symbol of
of arity
, then
is a formula; if
and
are formulas, then
and
are formulas; if
is a formula and
is a variable, then
is a formula; only something built from the preceding four clauses in finitely many steps is a formula. We will write
for a formula with free variables
in some defined order.
Definition (–sentence). An
-sentence is a
-formula with no free variables.
Definition (Atomic formula). Formulas of the form for some
-terms
or of the form
for some relation symbol
and terms
are atomic formulas.
Definition (Interpretation of terms). Let be an
-structure,
be a term of
, and
be a list of variables including all those appearing in
. The interpretation of
, written
is a function from
to
defined by: if
is a constant symbol
then
; if
is
then
; if
is
then
.
Definition (Interpretation of formulas). We define (read
as ‘models’) recursively as:
iff
;
iff
;
iff
;
iff
and
;
iff there is some
s.t.
.
Definition (–sentence). An
-sentence is a
-formula with no free variables.
Definition (Models of sentences). For a sentence , if
we say
is a model of
. For a set of sentences
, we say that
is a model of
(
) iff it is a model of all sentences in
.
Definition (Entailment). Let be a set of
-sentences and
be an
-sentence.
entails
, written
if every model of
is also a model of
.
Note that I am using the notation for entailment used by Kirby’s book, for consistency, but computer scientist readers of my blog will want to note that this symbol is commonly also used for (the more restricted, assuming sound) ‘proves’ relation for a formal deductive system.
Definition (Deductively closed). A set of
-sentences is deductively closed iff, for every
-sentence
, if
then
.
(Again note no formal deduction in play here.)
Definition (Satisfiable). A set of sentences is satisfiable iff there exists some
-structure
such that
.
Definition (Complete). A set of
-sentences is complete if, for every
-sentence
, either
or
.
Definition (Theory). A theory is a satisfiable and deductively closed set of -sentences.
Definition (Theory of a structure). The theory of an -structure
, denoted
is the set of all
-sentences which are true in
.
Elementary Equivalence
It’s clearly interesting to know whether structures can be distinguished by sentences:
Definition (Elementary equivalence). Two -structures
and
are elementarily equivalent, denoted
iff for every
-sentence
,
iff
.
Compactness
Theorem (Compactness). Let be a set of
-sentences. If every finite subset of
has a model then
has a model.
A huge amount of excitement flows from the compactness theorem, including many of the results that follow.
Proposition (Elementarily-equivalent non-isomorphic structures). Let be any infinite
-structure. Then there is another
-structure which is elementarily equivalent to
but not isomorphic to it.
And so, via this route, we get wonderful non-standard models. As we will see in a moment, via the Löwenheim-Skolem theorems, there are actually many such structures.
Axiomatisable Classes
Definition (Axiomatisable class). If is a set of
-sentences then denote by
the class of all
-structures which are models of
. The class
is axiomatised by
and is and axiomatisable class. The class is finitely axiomatised if it is axiomatised by a finite set of sentences.
By compactness, we can’t capture arbitrarily sized, but finite, models (e.g. the class of all finite groups):
Proposition (Large models for axiomatisable classes ensures infinite models). Let be an axiomatisable class with arbitrarily large finite models (i.e. for every
there is a model
whose domain is finite and of size at least
). Then
also contains an infinite model.
If we can finitely axiomatise a class, then if we know we can axiomatise it by some (possibly infinite set of) sentences, then it suffices to choose an appropriate finite subset of those sentences:
Proposition (Finite subsets of sentences axiomatise). If and
is finitely axiomatisable, then it is axiomatised by a finite subset of
.
Cardinality of Languages
Definition (Language cardinality). We will write for the cardinality of language
, which we define to be the cardinality of the set of all
-formulas containing only countably many variables.
Unsurprisingly, given this definition, the language cardinality is countable if the set of symbols is countable, otherwise it’s the same cardinality as the set of symbols:
Proposition (Language cardinality). .
Substructures/Extensions and Elementary Substructures/Extensions
Definition (Substructure). Let and
be
-structures, and suppose
.
is a substructure of
iff the inclusion of
into
is an embedding.
An example of a substructure would be the naturals as a substructure of the integers, with the language consisting of the relation and
; clearly the inclusion map is an embedding.
Lemma (Substructures preserve quantifier-free formulas). If ,
is a quantifier-free formula and
, then
iff
.
Taking the same example, we can see why a stronger notion than substructure is required in order to preserve formulas with quantifiers. For example clearly has a model in the integers but not in the naturals.
Definition (Elementary substructure/extension). is an elementary substructure of
(and
is an elementary extension of
, written
, iff
and, for each formula
and each
,
iff
.
The Tarski-Vaught test is a test for whether a substructure is elementary. The essence of the test is to check whether we can always find an element in the potential substructure that could replace the equivalent element in the superstructure in a formula containing just one variable ranging over the superstructure domain:
Lemma (Tarski-Vaught test). Let be an
-substructure and for every
-formula
and every
and
such that
, there is
such that
. Then
.
The Downward Löwenheim-Skolem theorem guarantees the existence of ‘small’ elementary substructures built from the base of an arbitrary subset of the domain of of the elementary extension:
Theorem (Downward Löwenheim-Skolem theorem). Let be an
-structure and
. Then there exists an elementary substructure
such that
and
.
While the Upward Löwenheim-Skolem theorem gives us a tower of models elementarily extending any infinite model:
Theorem (Upward Löwenheim-Skolem theorem). For any infinite -structure
and any cardinal
, there exists an
-structure
of cardinality equal to
such that
.
Definable Sets
Definition (Definable set). In an -structure
, a subset
of
is said to be a definable set if there is an
-formula
s.t.
.
One way to show that a set is undefinable is to find an automorphism not preserving the set:
Theorem (Preservation of definability). If is a definable set and
is an automorphism of
then
.
Notation (). We will write
for the set of all definable subsets of
.
Quantifier Elimination
Quantifier elimination is a useful way to get a grip on which sets are definable.
Definition (Quantifier elimination for structures). An -structure
has quantifier elimination iff for every
, every definable subset of
is defined by a quantifier-free
-formula.
Definition (Quantifier elimination for theories). An -theory
has quantifier elimination iff for every
, for every
-formula
, there is a quantifier-free
-formula
such that
.
These semantic and syntactic views line up:
Lemma (Structures and their theories are equivalent w.r.t. quantifier elimination). Let be an
-structure. Then
has quantifier elimination iff
has quantifier elimination.
Substructure Completeness
One way to show that a theory has quantifier elimination is via substructure completeness, a weaker notion than completeness.
Notation (). Given an
-structure
, define a new language
by adding a new distinct constant symbol
for every
.
is the
-structure obtained by interpreting each constant symbol
as
, with all other interpretations remaining as in
.
Definition (Diagram). The diagram of a
-structure
is the set of all atomic
-sentences and negations of atomic
-sentences which are true in
.
Definition (Substructure complete). A -theory is substructure complete if, whenever
is a substructure of a model of
, the theory
is a complete
-theory.
Proposition (Substructure completeness is equivalent to quantifier elimination). Let be a
-theory. Then
is substructure complete iff
has quantifier elimination.
Principal Formulas
Notation. Given an -structure
and an
-formula
with
free variables, we will write
for
.
Definition (Principal formula). Let be a complete
-theory. A principal formula w.r.t.
is a formula
such that: (i)
, (ii) for every
-formula
with the same tuple of free variables, either
or
.
Another way to get a good handle on the definable sets of a -structure is via their principal formulas, especially if there are only finitely many.
Proposition (Definable sets from principal formulas). Let be principal formulas in
variables for the (complete) theory
, defining distinct subsets of
. Also let these formulas cover
, i.e.
. Then every definable set in
is a union of some of the sets
, and
.
Categoricity
Bearing in mind the upward and downward Löwenheim-Skolem theorems, what’s the appropriate definition of a model that’s ‘effectively defined’ by a theory?
Definition (Categorical). A theory is
-categorical iff there is a model of
of cardinality
and any two models of cardinality
are isomorphic.
It turns out that categoricity can give us completeness:
Lemma (Łos-Vaught test). If an -theory
is
-categorical for some
and
has no finite models, then
is complete.
How do we know whether a theory is categorical? We have a a special case for countably categorical (i.e. -categorical) theories. It turns out that countably categorical complete theories are exactly those whose models have only finitely many definable subsets for each fixed dimension:
Theorem (Ryll-Nardzewski theorem). Let be a complete
-theory with an infinite model
and with
countable. Then
is countably categorical iff for all
,
is finite.
(Note to reader: the version of this theorem presented in Kirby instead links countable categoricity to the finiteness of Lindenbaum algebras, which I have avoided discussing in this blog post. But Lindenbaum algebras are isomorphic to algebras of definable sets for complete theories (see Kirby Lemma 20.3), so I have stated as above here. I have also eliminated elements of the full theorem presented, to make the presentation here self-contained.)
So how about the book? Would I recommend it to others?
From my perspective as an “informed outsider” to model theory, Kirby’s book was accessible. It’s brief – as the title says, it’s an invitation to model theory – and I think it does that job well. If you’re comfortable (or indeed enjoy) seeing material presented in a variety of ways, sometimes through example that generalises later in the book, sometimes through application, sometimes in its general form first, then you will probably enjoy the presentation – as I did. I felt the book falls a little short of a self-study guide, though, primarily because it doesn’t include worked answers to any of the exercises; this would be a welcome addition. This point is particularly relevant to Chapter 16, which (unlike other chapters in the book) takes the form of a ‘guided exercise’ to applying the ideas of the preceding chapters to the study of a particular structure.
Overall, I would definitely recommend to other outsiders wanting to catch a glimpse of what Model Theory is all about.