I have just returned from attending HiPEAC 2015 in Amsterdam. As part of the proceedings, I was asked by my long-time colleague Juergen Becker to participate in a panel debate on this topic.

Panels are always good fun, as they give one a chance to make fairly provocative statements that would be out of place in a peer review publication, so I took up the opportunity.

In my view, there are really two key areas where reconfigurable computing solutions provide an inherent advantage over most high performance computational alternatives:

  • In embedded systems, notions of correct or efficient behaviour are often defined at the application level. For example, in my work with my colleagues on control system design for aircraft, the most important notion of incorrect behaviour is would this control system cause the aircraft to fall out of the sky? An important metric of efficient behaviour might be how much fuel does the aircraft consume? These high level specifications, which incorporate the physical world (or models thereof) in its interaction with the computational process, allow a huge scope for novelty in computer architecture, and FPGAs are the ideal playground for this novelty.
  • In real time embedded systems, it is often important to know exactly how long a computation will take in advance. Designs implemented using FPGA technology often provides such guarantees – down to the cycle – where others fail. There is, however, potentially a tension between some high level design methodologies being proposed and the certainty of the timing of the resulting architecture.

Despite my best attempts to stir up controversy, there seemed to be very few dissenters to this view from other members of the panel, combined with a general feeling that the world is no longer one of “embedded” versus “general purpose” computing. If indeed we can draw such divisions, they are now between “embedded / local” and “datacentre / cloud”, though power and energy concerns dominate the design process in both places.